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I. INTRODUCTION 

The  exact  calculation of the  temperature  distribution  in a radiat- 
ing  body  involves  the  solution of a differential  equation  with a nonlinear 
boundary  condition.  Since  there  are  no  general  mathematical  techniques 
available  for  the  exact  analytical  solution of such  nonlinear  equations, it 
is   necessary  to  employ  approximate  techniques of solution.  Consider- 
able  attention  has  recently  been  given  to  the  calculation of the  tempera- 
ture  distribution  in  thin-walled  objects  subject  to  solar  radiation.1-3 
The  approximations  employed  in  these  calculations  are  based  on  the 
hypothesis  that  the  temperature  distribution  in a thin  shell  differs  very 
little  from  that  in a shell  of zero  thickness.  The  validity of the  hypothe- 
s i s  is unquestionable  for  sufficiently  thin  shells,  but  there  is  an  open 
question  as  to how thin  is  sufficiently  thin. In other  words,  it would  be 
useful  to  have  an  estimate of the e r ro r   i ncu r red  by replacing a thin 
shell  by a shell  of zero  thickness.  

The  work  reported  here not  only  provides  an  answer  to  this 
question,  but  also  presents a systematic  procedure  for  the  generation 
of a uniformly  valid  asymptotic  expansion of the  temperature  distribu- 
tion  in  powers of a thickness  parameter.   The first term  in   the  asymp- 
totic  expansion is the  conventional  thin  shell  approximation,  and 
succeeding  terms  represent   the  correct ions  necessi ta ted by  the  nonzero 
thickness of the  shell.  The  effect of spinning  the  shell  about  an  axis  at 
an  angle p(0 < p < r/2) to  the  direction of the  solar  flux is also  con- 
sidered.  Although  the  analysis  is  performed  for  the  specific  case of a 
spherical   shel l ,  it probably  can  be  generalized  to  include  any  shell  that 
has  azimuthal  symmetry  about  the  spin  axis  (body of revolution). 
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11. FORMULATION O F  THE PROBLEM 

A. Differential  Equation 

The  temperature  distribution  in a spinning  spherical  shell  com- 
posed of homogeneous,  isotropic  material  satisfies  the  conventional 
diffusion  equation  modified  by  the  addition of a term  that   or iginates  
from  the  convection of heat  introduced by the  motion4 

K is the  diffusivity of the  material  (assumed  to  be  independent of 
temperature  and  position), t denotes  t ime,  v(r)  is the  velocity of 
the  sphere  at  the  point r, and D denotes  the  domain  occupied'.bl. 
the  spherical  shell.  In The problem  to  be  conside  red  here , the  sphere 
is in the  vacuum of outer  space  and it is assumed  that  the  region  in- 
terior  to  the  shell   is   also  evacuated.  Therefore,   there is no  convective 
t ransfer  of heat  at   ei ther  boundary.  The  source of heat is a uniform 
solar  f lux Fo which is assumed  to  be  incident  along a direction  which 
makes  an  angle p with  the  spin axis of the  sphere  (see  Fig.  1). 

" 

Since  the  transient  behavior of the  temperature  distribution is 
not of particular  interest   in  the  practical   applications  envisaged  for 
the  results  to be derived  here  (principally  the  calculation of satell i te 
temperature  distribution),  it will  be  assumed  that  the  steady  state 
has  been  reached.  This  implies  that   the  temperature  distribution is 
not a function of time.  The  partial  differential  equation  satisfied by 
the  steady  state  temperature  distribution  is  

( v 2  - 6) T ( r )  = 0 r i n D .  (11. 2)  - - 

Equation (11.2) is obtained  from (11. 1)  by replacing a /  a t  with  zero 
and v ( r )  with ad[wr] sin 0 (o E ra te  of rotation, 56 E unit  vector  in 
the 6 a i r ec t ion i .  

B. Boundzry  Conditions 

The  boundary  conditions  at  the  surface of the  shell  can  be 
derived  from  the  physical   condition  that   the  net   heat  transfer  across 
a boundary  must be continuous.  Within  the  shell,  heat is t r ans fe r r ed  
by conduction.  The  component of f lux  normal  to  the  boundaries of 
the  shell is  f K aT/ar   where K denotes  the  thermal  conductivity 

3 



0302-2 

SOLAR 

X 

Fig. 1. Coordinate  system and orientation of the solar flux 
with respect  to  the spin axis. 
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of the  shell   material ,   The  minus  sign is taken  at  the  outer  boundary  and 
the  plus  sign  at  the  inner.  Outside of the  shell,  heat is t ransfer red   by  
emission  and  absorption of radiation.  The.magnitude of the  radiated 
f l u x  is given  by  the  Stefan-Boltzmann  law 

4 
radiated  flux = crz T (r) ,  r on S (11. 3)  - - 

-12 2 
where cr is Stefan's  constant  (1.37 x 10  cal/cm  -sec-deg4),   and c 
is the  emissivity of the  surface.  The  magnitude of the  flux  absorbed 
will  be  calculated  under  the  assumption  that  each  surface  element  emits 
and  absorbs  radiation  in  accordance  with  Lambert 's  law. When the 
heat  radiated  and.absorbed  at  the  outer  surface of the  spherical  shell 
is  equated  to  the  normal  component of heat  flux  conducted  at  the  bound- 
ary,  the  following  condition  is  obtained: 

(11.4) 

where - E F0Gs(0, h, p) denotes  the  solar  flux  absorbed by the  shell   at  
' J  d. 

G S ( O ,  d,  p) = cos f3 cos 8 + sin p sin 0 cos d , (11. 5) 

for  the  values of 0 and d where  the  quantity on the  right  hand  side is 
greater   than  zero  and GS i s   zero   for   a l l   o ther  8 and d. 

On the  inner  surface of the  spherical  shell  the  heat  absorbed at 
any  given  surface  element  comes  from  the  heat  radiated  and  reflected 
from  all   other  points  on  the  surface.  A calculation of the  absorbed 
component of heat  flux is given  in  Appendix A. This  calculation 
reveals  that  the  heat  absorbed  at a point  on  the  inner  surface of a 
spherical   shell  is a constant  independent of the  coordinates  of  the  point.* 

I 1 flux  absorbed on 21T 
the  inner  surface - U E  1 dd dQ(sin 8 T (r)), r on S of a spherical  

- Q = -  

shell 0 0 

4 
4Tr - - i *  

L J 

(11. 6 )  

*< 
In the  more  general   case of a body of revolution,  the  heat  absorbed at 
a point  is a function of the  latitudinal  coordinate  but  not of the  azimuthal 
coordinate. 

5 



Hence the boundary condition at the inner  surface of the spherical  shell 
is 

a T (2) 4 
K - = UE T (r) - Q, ar - r on S - i *  (11..7 ) 

The remainder of this  report is  devoted to the approximate 
solution of the boundary value  problem  posed in eqs. (11. 2), (11.4), 
and (11. 7). 
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111. 

A. 

PERTURBATION  CALCULATION FOR A THIN SHELL 

Thickness   Parameter  

Sometimes 
approximated by th 
this is the  basis of 

the  solution of a complicated  problem is closely 
.e  solution of a much  simpler  problem. In essence,  
perturbation  theory.   The  characterist ic  feature 

of all  problems  solvable by perturbation  theory is the  presence of a 
small   parameter.   Typically,   the  parameter is the  ratio of two  lengths, 
t imes,  or magnitudes (mass, temperature,   force,   etc.  ). The first 
t e r m  in a perturbation  series  is  the  solution of the  original  problem 
for  the  limiting  case  in  which  the  parameter  is  zero.  Subsequent 
terms  in  the  series  are  the  corrections  to  the  zero  order  solution 
necessitated by the  nonzero  value of the  parameter.  In the  case of 
the  temperature  distribution  problem  formulated  in  Section 11, the 
small   parameter   is   the   ra t io  of the  half  thickness 6 of the  spherical 
shell  to  the  mean  radius  a.  Hence  the  zero  order  term  in  the  per- 
turbation  solution of the temperature  distribution  problem  corresponds 
to  the  temperature  distribution  in a shell  of zero  thickness,  and  the 
higher   order   terms  are   correct ions  necessi ta ted by the  nonzero  thick- 
ness of the  shell. 

When the  differential (11. 2)  i s   wr i t ten   in   t e rms  of the  conven- 
t ional  spherical   coordinates  r ,Q,  and d ,  the  thickness  parameter 
6/a  does  not  appear  explicitly.  Thus,  it   is  necessary  to  express 
(11. 2 )  in t e r m s  of other  variables  that  make  explicitly  evident  the 
dependence of T ( r )  on &/a.  This  can  be  accomplished  by  replacing 
the  radial   variabl7 r by a new  variable 5 

c z - ,  r - a  
6 (111. 1 ) 

This  change of var iable   is   suggested by the  success of a similar  change 
employed  in  the  approximate  theory of the  elastic  deformation of thin 
plates  and  shells.  Another  change  that  is  not  essential,  but  which 
simplifies  the  equation, is the  representation of T(t;, 0, d)  i n   t e rms  
of a dimensionless  variable U(5 , 8 ,  d )  

When wr i t ten   in   t e rms  of the  variables U, 5 , 0 ,  and d, the  problem 
posed  in (11. 2),  (11. 4), and (11. 7) becomes 
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where 

a =  0 
K 

2lT TT 

q = - dd dQ(sin 8 U (-1, 8 , d ) )  . 1 4 
4l.r 

0 

(111. 3) 

(111.4) 

(III. 5)  

(III. 6 )  

(III. 7 )  

B. Generation of an  Asymptotic  Expansion by the  Repeated 
Application of a Limi t   Process  

Before  proceeding  with  the  solution of the  problem  posed  in 
(111. 3)  to (111. 5 ) ,  we will   discuss a formal   procedure  that   can  be  used  to  
generate  asymptotic  expansions  in  such  problems.  Lagerstrom  and 
Cole5  have  shown  that  the  asymptotic  solution of a partial   differential  
equation  containing a small parameter  can  be  obtained by repeatedly 
applying a limit  process  to  the  equations.  The  appropriate  limit  process 
in a given  problem  depends  on  the  nature of the  exact  solution of the 
problem. In regular  perturbation  problems  the limit process  simply 
involves  taking  the  limit as the  small   parameter   goes to zero  with  the 
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independent  variables  fixed.  This  procedure  yields  results  that  are 
not  uniformly  valid  in  singular  perturbation  problems.  In  such  cases 
it is generally  necessary  to  stretch  the  independent  and  dependent 
var iables  by factors  proportional  to  the small parameter  and  take a 
l imit  as the small parameter  goes  to  zero  with  the  stretched  variables 
fixed.  The  details of the  formal  procedure  for  generating  asymptotic 
expansions  in  the  case of s ingular   per turbat ion  problems  are   discussed 
further  in  Section IV-B. In this  discussion we are   mainly  interested  in  
demonstrating a formal  procedure  for  generating  asymptotic  expansions,  
regard less  of the  particular  type of limit process  involved. 

Consider  the  following  partial  differential  equation  and  boundary 
conditions 

i W ( x ,  - E )  = 0 - x in D (111. 8 )  

where x denotes  the  unstretched  independent  variables  in  the  case of 
a regular  perturbation  problem  and  the  stretched  independent:variable s 
in a singular  perturbation  problem,  and E is a small parameter   in  
t e r m s  of which  the  operators %- and R, can  be  written 

m=O,  1, 2 , .  . . 

ZB = c 
m=O, 1, 2 , .  . . E 'Bm ' 

m 

(111. 1 0) 

(111. 1 1 ) 

The  function F in (111. 9) is  a  known function of W, x,  and E. Define 
the  limit  proce s s 

- 

Lim E l imi t   as  E - 0 with x fixed, 
- X - (111. 1 2) 
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and  denote  the  result of applying Lim, E -n  to a function  by a subscript  
n. According  to  the  procedure  outl ind  by  Lagerstrom and Cole,  the 
first term in  the  asymptotic  expansion of W(x, E ) satifies  the  equations 
obtained  when Lim, is applied  to (III. 8) andTIi1. 9) - 

To wo = 0 - x i n D ,  (111. 13) 

w~ = 0 - x on S (111. 14) 

Wo(z) = Lim  W(x, E ) (111. 15) x -  - 

The  second  term  in  the  asymptotic  expansion of W(x, E ) satisfies  the 
equations  obtained  when Lim, E -' is applied  to  the-result  obtained 
when (111. 13)  and (111. 14)   are   Tubstracted  f rom (111. 8) and (111. 9). 

Lo w1 + of1 wo = 0 - x i n D  , (111. 16) 

W1(x) = Lim E (W(2 ,  E ) - Wo(x))  . (111. 18) -1  
X - 

The  third  term  in  the  asymptotic  expansion of W(x, E ) satisfies  the 
equations  obtained  when  Limx E - 2  is applied  to tKe difference  between 
(HI. 5), ((111. 6))and  the  sum of- (111. l o ) ,  ((111. 11))  and E t imes  (111. 13) ,  
((111. 14)). 

x. w2 + q w1 + s2 wo = 0 - x i n D ,  (111. 19) 

'Bo w2 ' zB1 w1 ' JB2 wo = - x  on S (111. 2 0 )  

10 



Higher  order  terms  in  the  asymptotic  expansion  satisfy  equations  ob- 
tained  in a similar fashion.  The  nth  term satisfies the  equations 
obtained  when Lim, E -n  is applied  to  the  difference  between (111. 8 )  
((111.9)) and  the  sumof E times  the  equations  satisfied  by W,(x) 
for  all m between  zero  and (n - 1). 

n 
” 

m=O 

n 

“;%Bm n - m -  W (x) = Fn (x) 2 on S . 

(111. 22) 

(111. 23) 

m=O 

r n- 1 1 

W (x) = Lim € W(2,  E ) - 1: E 

n -  X - m=O 

n- 1 

W (x) = Lim € W(2,  E ) - 1: E W (x) (111. 24) 
n -  X 

m -  
- m=O 1 

The  procedure  outlined  in  the  preceding  paragraph  does  not  yield 
results  that  could  not  have  been  obtained  in  another  fashion.  For  instance, 
the  same  equations  are  obtained  when W(x ,  E ) is replaced  in (111.8) and 
(111. 9 )  by a power  series  expansion  in E and  like  powers of E a r e  
equated  to  zero.   The  procedure  developed  by  Lagerstrom  and  Cole,  
however,  is  somewhat  more  convenient  to  apply  in  singular  perturba- 
t ion  problems.  Furthermore,   i t   clearly  places  in  evidence  the  nature 
of the  approximation  involved  in  replacing W(x, E ) by  the  expansion so 
derived.  The  difference  between W(x, - E ) and-an N term  expansion is 

- 

N 
R (x, E ) = W(x,  E ) - 2: c m  W (x) . - (111. 25) N- m -  

m=O 

Application of the  l imit   process  Limx E - ( N + l )  to  RN(x, E ) yields a 
relation  between  the  limiting  behaviofof RN(x, E ) andThe (N + 1 ) g  
t e r m  in  the  perturbation  expansion 

- 

(111. 26) 

11 
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The  result  given  in (111. 2 6 )  implies   that   R~J(x,  - E ) is of the  order  

R (x, E )  = O(E N t  1 
N -  WNt 1(L f ) )  a 

(111. 27) 

and  thus  the e r r o r   i n c u r r e d  in  approximating w(xa ) by an N t e r m  
expansion is of the   o rder  of the f i rs t   term  neglected.  

C. Prefatory  Comments on thc  Perturbation  Calculation of U(5 ,  0, d )  
The  problem  posed  in (111. 3 )  to (111. 5) is   somewhat  more  compli-  

cated  than  that  discussed  in  the  preceding  section.  Instead of being a 
simple  one  parameter  perturbation  problem,  the  calcul  tion of 
U ( 5 ,  0, 6 )  involves   three  parameters :   d /a ,  a = (a€  r174 F:/K), and 
o a  /.. The  significance of the  thickness  parameter  6/a  has  already 
been  discussed. In this  section,  the  effect of the  remaining  two  param- 
eters  will  be  examined. 

The   parameter  a appears  in  the  boundary  condition  equations 
(111.4) and (111. 5) ,  and  is a measure  of the  relative  magnitude of 
radiated  and  conducted  flux.  The  mathematical  significance of a 
is  evinced by a consideration of its  effect  on  the  boundary  conditions 
obtained  from (111.4) and (111. 5)  in  the  limit of small   d/a.  A crucial  
step  in  the  solution of (111. 3 )  to (111. 5) by perturbation  theory  is  the 
l inearization of the  boundary  conditions  when d / a  - 0. Application 
of the  l imit   process 

L i m -  - 0; 5, 0, d fixed 3 Lim 6 
a 5 

to (111.4) and (111. 5 )  yields 

(111. 28)  

(111. 29) 

auO a [ u 4 - q ] ,  < =  - 1  . (111. 30)  " 

a5 - Lim5 a 
Thus, a necessary  condition  for  the  linearization of the  boundary  condi- 
t ions  is  

12 



a < <  - a 
6 ,  (111. 31)  

because  when a is of the  same  order  as a/6,  the  righthand  sides of 
(111. 29) and (111. 30) do not  vanish  in  the limit of small d /a .  

Very  small   values of a are   a l so   t rouble   some.   For  a'a.  of 
the order   O(d/a)   the  zero  order   temperature   dis t r ibut ion  sat isf ies  
a nonlinear  partial  differential  equation  that is not  any  easier to 
solve  than  the  exact  equations  from  which it is obtained  (see  Appendix 
B for a derivation of this  equation). 

In most  of the  applications  for  which  these  calculations  are 
intended, a is   nei ther   too  large  nor   too  small .  It is   well   to  remem- 
ber,  however,  that  the  perturbation  calculations  given  in  this  report 
yield a valid  approximation  only  in  those  problems  for  which 

6 / a  < <  a < <  a / 6  . (111. 32)  

The  parameter W'/K i s  a measure  of the  relative  magnitud 
of the  rotation  rate w an% a circumferential  equilibration  rate K /a . 
When w a 2 / K  is small ,   the  temperature  distribution is close  to  that of 
a stationary  shell.  Likewise,  when wa2/K i s   l a rge ,   the   t empera ture  
distribution  approximates  that  for  the  case w - CO. The  form of (111. 3)  
indicates  that  the  transition of the  temperature  distribution  from  that 
which  exists  when w = 0 to  that  which  exists  when w - co is encom- 
passed by the  following  cases: 

5 

2 
1. 

the  rotation of the  shell   are  al l  of second  order   or   smaller   in  

wa 
- K = O(') - The te rms   in  (111. 3)  that   or iginate   f rom 

the  thickness  parameter  6/a.  Consequently,  the  zero  order 
temperature  distribution is unaffected by the  rotation.  The 
temperature  distribution  in  this  case is obviously  quite  close 
to  that  which  exists  when w = 0 (see  Section 111- D- 1). 

2 
2. 

(111. 3)  in   t e rms  of the o r d e r  6 B a or   smal le r ,   the   zero   o rder  
temperature  distribution  is  significantly  influenced by rotation 
when wa2/K = O(a/6).  Calculations  given  in  Section V indi- 
cate  that U o ( c  , 8 ,  d )  sat isf ies  a nonl inear   f i rs t   order   ordinary 
differential  equation.  The  transition  from a temperature   dis-  
tr ibution  characterist ic of w - 0 to that  for w -. a, is des- 
cribed by the  solutions of this  nonlinear  equation. 

w a  
" 

K - o(a/6) - Althou h the  effect of rotation  enters 

1 3  



2 
3 .  wa 
" 

K - o(a/6)2 - The  effect of rotation  enters  the  differ- 
ential  equation  for U(&, 0, d)  a s  a ze ro   o rde r   t e rm  in   6 / a .  
Calculations  given  in  Section 111- D- 2 revea l   tha t   the   zero   o rder  
temperature  distribution  in  this  case  corresponds  to  that   which 
would  exist i f  w - 03. Thus,  the  temperature  distribution is 
only  sl ightly  perturbed  from  the  distribution  for w - 03. 

When the  magnitude of wa2/K is outside  the  range  covered  in  items 
1, 2, and  3,   the  zero  order  temperature  distribution is identical  with 
that  which  exists  for w = 0 (ma2// (  < O(1))   o r  w - 03 (wa2/K 
> O(a/6)2).   The  departures of the  temperature  distributions  from 
those  obtained  in  item 1 o r  3 appear   in   the  higher   order   correct ion  terms,  

D. Regular  Perturbation  Calculations 

The  procedure  outlined  in  Section 111-B will now be applied  to 
the  problem  posed  in (111. 3 )  t o  (111. 5).  At the  outset it will be assumed 
that  this  is a regular  perturbation  problem, so that  the  appropriate 
dependent  and  independent  variables  are U, 5 ,  8 ,  and d, as  writ ten  in 
(111. 3 )  to (HI. 5). This  assumption  proves to be  valid if portions of the 
domain D are  excluded.  The  domains  that  must  be  excluded  are 
boundary  layer  regions  within  which  the  angular  derivatives of the 
temperature  distribution  become  quite  large.   The  solution of (111. 3) 
to (111.5) in  these  regions is deferred  until  Section IV. Calculations 
will  be  given  here  for  the  temperature  distribution  when  (oa2/K) = 
0(1)  and  O(a/6)2.  The  transitional  case  (ma2//() = O(a/6)  will  be 
considered  separately  in  Section V. 

2 
1. " wa 

K 
- 0 ( 1 )  (Slow  Rotation) 

The  first  two  terms  in  the  regular  perturbation  expan- 
sion of U ( c ,  8 ,  d)  will  be  derived  in  this  section.  Subsequent  terms 
can  be  obtained  in a similar  fashion.  Application of the l imit   process  
Lime  to (111. 3 )  to  (111. 5 )  yields  the  following  equations  for  the  zero 
order   temperature   dis t r ibut ion.  

(111. 33) 

5 = f l  . (111. 34) 
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The  solution  of (III. 33) and (HI. 34) is a  function  independent of & 

uO = Ao(Q, d)  (111. 35) 

Equation (III. 35) verifies  an  assumption  often  made in the  approximate 
calculation of the  temperature  distribution  in  thin shells; viz.  that  the 
zero  order  temperature  distribution is independent of the  shell  thickness. 

The first   order  term  in  the  regular  perturbation  expansion of 
U(c,  8 ,  b )  satisfies  the  equations  obtained  when Limb (a/6) is applied 
to  the  diJference  between (111. 3) ((111. 4), (III. 5 ) )  and 11. 33) ((111. 34), 
(111. 34 ) )  : 

- "  aul - a [u4 
a c  0 - %I & = 1  

a u l  - = a [ut a c  - q O 1  ' 
c = - 1  

(111. 36) 

(III. 37) 

(111. 38) 

where 

7 db 1 dQ(sin 8 Uo(- 1, 8 , d ) )  . (III. 39) qo = Lime = ? z  4 

0 0 

The  solution of (111. 36) i s  of the  form  (note  that (auo/a&) = 0 )  

Substitution of (111.40) in  the  boundary  conditions (III. 37) and (111. 38) 
yields  the  equations 

Q 
The  notation  employed  here  is  to  be  interpreted as meaning (III. 33) is 
subtracted  f rom (III. 3) ,  (III. 34) f rom (III. 4), and (111. 34) f rom (III. 5). 
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- B~ = aIA0 4 - G ~ ]  , (111.4 1 ) 

(111.42) 

from  which  i t   is  a simple  matter  to  obtain  expressions  for A and B 1. 
0 

(111.43) 

(111. 44) 

The  zero  order   temperature   dis t r ibut ion  expressed  in  (111.43) is identical 
with  the  result  obtained  when  one  equates  to  zero  the  net  outward  flux 
f rom a shell  of zero  thickness.  This  can  be  proved  by  noting  that  heat 
is not  conducted  in  the 0 and 4 directions  in a shel l  of zero  thickness.  
Thus,  the  flux  balance  can  be  written 

flux  radiated  at   outer  surface t flux  radiated  at   inner  surface = 0 

(111. 4 5) 

and   in   t e rms  of the  dimensionless  variable U this  becomes 
0 

(U4 0 - Gs) t @: - qo) = 0 (111. 4 6 )  

Solution of (111.46) for  Uo yields a result  identical  to  that  obtained by 
the  perturbation  calculation. In anticipation of the  nonuniformity of 
the  regular  perturbation  expansion  in  the  boundary  layer  region  near 
the  shadow  boundary,  the  calculation of go will  be  deferred  until 
Section IV. This is necessary  s ince q o  depends  on  the  zero  order 
temperature  distribution  over  the  entire  inside  surface of the  shell. 

In order  to  complete  the  determination of  U1 ( c ,  0 ,  d) ,  i t  is 
necessary  to  consider  the  equations  satisfied  by Uz(5 ,  0, d). Those 
equations  are  obtained  when Lim (a/6)2  is   applied  to  the  difference 
between (HI. 3)  ((111. 4 ) ,  (111. 5 ) )  and  the  sum of (111. 3 3 )  ((111. 3 4 ) ,  (111. 3 4 ) )  
and  6/a  t imes (111. 3 6 )  ((111. 3 7 ) ,  (111. 3 8 ) ) .  
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au2 
-a5 = 4 a Uo  U1 3 & = 1  

- = 4 a Uo U1 a u 2  3 
a 6  - a q 1  s 5 = -1 

(111.47) 

(111.4 8) 

(111. 49) 

where 

2Tr Tr 

(111. 5 0 )  

and 4% d , W  
denote s the  ope  rat0 r 

(111. 5 1 ) 

Equation (111.47) can  be  integrated  to  obtain  the  following  solution  for 
U , ( L  Q Y  6). 

(111. 52 )  

Substitution of (111. 52)  in  the  boundary  conditions (111.48) and (111.49) 
then  yields two equations  that  can  be  solved  for  the  undetermined  function 
A1 (Q, d )  (and also B2(Q, d ) ,  i f  desired).   The  result  is 



(111. 5 3 )  

Examination of the  resul ts   obtained  for   the  f i rs t   two  terms  in   the 
regular  perturbation  expansion of U(&,  €3, 6 )  reveals  that  Uo(&, 0, d)  i s  
a boundedcontinuous  function of €3 and d, whereas  U1(5, 0, d) i s  
boundedand  continuous  only if the  vicinity of the  shadow  boundary is 
excluded.*  The  singular  behavior of U1(&, €3, d)  originates  in  the  term 
Rg, d,,, A, which  appears  in  the  expression (111.53) for  A l ( 0 ,  6 ) .  A s  
a consequence of this  singular  behavior,   the  perturbation  expansion 
de rived  in  this  section  is  not  uniformly  valid  over  the  entire  sphere. 
The re   i s  a small  region  in  the  vicinity of the  shadow  boundary  within 
which  singular  perturbation  theory  must  be  applied.  This  will  be  done 
in  Section IV. 

2 
2. o a  2 
" - O(a/6)  (Rapid  Rotation) 

K 

The  statement  that wa2/K is of the  order   (a /6)   implies  2 

that Lim (6/a)2 oa2/K i s  a bounded,  nonzero  number.  Thus,  applica- 
tion of the limit process   L im&  to  (111. 3)  to (111. 5)  yields  the  following 
equations  for  the  zero  order  temperature  distribution  in a rapidly  rotat- 
ing spherical   shell .  

2 2 (G - + &) uo = 0, - 1 I & I l , O I d r 2 l T  
a &  

(111. 54) 

(111. 5 5) 

The  only  solution of (111. 54)  that   satisfies (111. 55) is the  trivial  solution 

1- 

The t e r m  "shadow  boundary"  denotes  the  boundary  between  the  region 
in  which Gs(Q, d,  p )  > 0 and  that  where Gs(0, d,  p) = 0. 
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Thus,  the  zero  order  temperature  distribution  in  the case of a rapidly 
rotating  thin  spherical  shell is independent of both  the 6 and d 
coordinates. 

The  equations  satisfied by the first order   terms  in   the  regular  
perturbation  expansion of U(6, 8 , d )  are  obtained  when Lim a/6 is 
applied  to  the  difference  between (111. 3 )  ((III. 4), (111. 5) )  and fIII. 54) 
((111. 55), (111. 55)). 

(111. 58) 

(111. 59) 

A solution of the  problem  posed  in (111. 57) to (111. 5 9 )  can  be  obtained by 
separation of var iables .   For   the  sake of brevity,   the  present  discourse 
will  be  confined  to a skeletal  outline of the  crucial  steps  in  the  solution 
and a quotation of the  results.  Since U1 is a real  periodic  function of 
b, the  solution of (111. 57)  is expressed  in  the f o r m  

(111. 60) 
m = o  

where  Re  denotes  that  the  real  part of the  sum is to  be  taken.  The 
Z lm(c ,  €4) are  solutions of the  equation 

2 
a 'lm 2 w 6  m 7 - i- K Z = o .  lm  

(111. 61) 
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Solution of  (111.61) fo r  Zlm then  yields  the  following  expression  for 
U , ( L  0, d): 

1 1 

a3 

m= 1 

Substitution of (111. 6 2 )  in  the  boundary  conditions (111. 58) and (111. 5 9 ) ,  
multiplication of the  results by cos  mddd  or  sin  mddd,  and  integra- 
tion  over  the  interval 0 5 d 5 2.rr g.ive s equations  that  can  be  solved 
for  Co(0 ) ,  Dl(0),  Arm(€)),  Aim(Q),  Brm(Q),  and  Bim(0).  The  results 
of this  calculation  are 

(111. 66) 
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1 
#j 

M1 2 A (0) = - det M rm(Q,  P) t i m  (111. 6 7 )  

M1 3 B (e) = - rm  de t  M Tm(% P) 9 
(111. 6 8 )  

where 

Tm(Q, P) = - Q GS(O, d, P) cos  md dh, m = 1 ,  2, 3 , .  . . . 
TT 'm 

0 

The M . .  ( j  = 1, 2 ,  3 ,4 )  are  cofactors  and  det M the  determinant of the 
mat r ix  1J 

M :  

After  considerable  mathematical  manipulation,  the Mij(j = 1, 2, 3 ,4)  
and  det M obtained  from (111.70) can  be  writ ten  in  the  surprisingly 
s imple  form 
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M1 3 = 2312 cos(pm - 3 [ e pm -e  - pm (1 - 2 s in  2pm) , (III. 73) I 

det M =  C COS 4p m - cosh  4p m ) . (III. 75) 

Note  that   the  zero  order  temperature  distribution C ( Q )  expressed  
in (111.64) is the  same  as  would  be  derived by the  methods OF the 
section  for a source  having  the  averaged  solar  flux  distribution 
A sphere  rotatihg at an  infinite  rate  would  be  irradiated by such a f l u x  
distribution.  Thus,   the  zero  temperature  distribution  in a spherical   shel l  
spinning  at a rate  of the   o rder  is  identical  to  that  when w - 00. 
The  difference  in  the  temperature  distribution  for  the  two  cases  appears 
in   the  f i rs t   and  higher   order   terms  in   the  per turbat ion  expansions.  

To complete  the  determination of U1(&, 8 ,  d),  note  that C1 ( Q )  
can  be  obtained  from  the  equations  for U2(&, 8 ,  d) in  exactly  the  same 
manner  as  Co(Q)  was  obtained  from  those  for U l ( & , Q ,  d). Since  this 
calculation is quite  straightforward,  we  simply  quote  the  result 

(111. 76) 

A s  in  the  case of slow  rotation,  the  regular  perturbation  expan- 
sion of the  temperature  distribution  in a rapidly  rotating  sphere is 
nonuniform  in  certain  domains.  These  troublesome  domains  are 
located  in  the  vicinity of the  c i rc les  8 = cos-'(*  sin p) where  the 
second  derivatives  with  respect  to 8 of the  averaged  flux  distribution 
--) (and  thus,   also  Co(Q))  are  singular.  
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IV . APPLICATION  OF SINGULAR  PERTURBATION  THEORY 
TO  OBTAIN  UNIFORMLY  VALID  PERTURBATION EXPANSIONS 

A. ~ Nonuniformity -~ " ~- " of the  *Regular  Perturbation  Expansions in Certain 
Domains  (BouniTy  Laye r s)  

The  singular  behavior of the first order   term  in   the  regular  
perturbation  expansion of U(&, 8 ,  d) has  already  been  noted  in 
Sections 111-D- 1 and 111-D- 2. Calculation of additional  terms  in  this 
expansion  only  serves  to  worsen  the  situation,  since  the  singularity 
becomes  progressively  s t ronger   in   each  successive  term.   The  error  
incurred  in  an  asymptotic  approximation is of the  order  of the  last 
term  omitted.  Consequently,  although  the  zero  order  term  in  the 
regular  perturbation  expansion of U(&, 8 ,  d) is well  behaved  every- 
where,   i t   i s   not  a uniformly  valid  approximation  since  the  error 
(that  is, 6 / a  U1(&, 8 ,  b ) )  i s  unbounded  in  the  domains  where 
V I ( & ,  8 ,  d)  is  singular. In order  to  obtain a uniformly  valid  approxi- 
mation,  the  regular  perturbation  expansion  must  be  replaced  in  the 
vicinity of i ts   singularit ies by  an  expansion  that  is  well  behaved  in 
these  regions. 

Perturbation  problems  in  which  the  straightforward  applica- 
tion of regular  perturbation  theory  fails   to  yield  uniformly  valid 
resul ts   are   referred  to   as   s ingular   per turbat ion  problems.   The 
source of the  singular  behavior of the  regular  perturbation  expan- 
sion  for  such  problems  can  usually  be  traced  to  the  improper  treat- 
ment of a par t icu lar   t e rm,   o r   g roup  of terms,  in  the  exact  equation. 
In regular   per turbat ion  theory,   the   terms  in  a differential  equation 
are   ordered  according  to   the  order  of their  coefficients.  For  instance, 
the mth term  in  the  differential  equation (zm is a differential 
operator)  

N 

(IV. 1) 

m=O 

is  taken  to  be  O(em).  This  assumes,  however,   that  sm W(x)  is of 
the  order  unity.   Singular  perturbation  problems  are  characGrized 
by the  existence of vanishingly  small  domains  within  which  this  con- 
dition is violated.   These  domains  are  located  in  regions  where  the 
nature  of the  solution  changes  rapidly  and  drastically. 

The  most  famous  example of a singular  perturbation  problem 
is  the  fluid  flow  past  an  obstacle  in  the limit of small viscosity. At 
a sufficiently  great  distance  from  the  surface of the  obstacle,  regular 
perturbation  theory  yields a valid  approximation,  the first t e r m  of 
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which  corresponds  to  the  inviscid  flow  field  past  the  obstacle.  The 
regular  perturbation  expansion,  however,  fails  to  describe  the  flow 
field  in a thin  layer  near  the  surface of the  obstacle  (boundary  layer), 
In this  region,  there is a rapid  change  in  the  field  from  that  charac- 
te r i s t ic  of inviscid flow to  that   characterist ic of viscous flow. 
Prandtl  6 recognized  that  the  difficulties  associated  with  the  regular 
perturbation  expansion  in  the  boundary  layer  could  be  remedied  by 
correctly  appraising  the  order of magnitude of the  var ious  terms  in  
the  governing  differential  equations.  Subsequent  work  on  singular 
perturbation  theory  has  also  been  largely  directed  toward  the  solu- 
tion of fluid  flow  problems.  As a consequence,  the  domains  within 
which  regular  perturbation  theory  fails  are  commonly  referred  to  as 
boundary  layer  regions  even  in  problems  that  have  nothing  to do with 
E luid  flow. 

The  singular  behavior of the  perturbation  calculation of 
U(5 ,  Q , d )  is   caused by a lack of sufficient  smoothness  in  the  incident 
solar  flux  distribution Gs(8,  d, p) .  Although GS is  continuous  every- 
where,   i ts   derivatives  are  discontinuous  across  the  shadow  boundary. 
The  resultant  singular  behavior of the  second  and  higher  order 
derivatives  produces a rapid  variation of Uj5, 8 ,  d )  in the vicinity of 
the  shadow  boundary.  Thus  the  assumption  that 

i s  of the order  (6/a)  is   not  legit imate  in  this  domain. A systematic 
procedure  that  can  be  utilized  to  obtain a valid  perturbation  expansion 
in  the  boundary  layer  domains  will  be  discussed  in  the  next  section. 

2 

B. Method  of  Matched  Asymptotic  Expansions " ~~ 

In the  time  that  has  elapsed  since  Prandtl  introduced  his  boundary 
layer  theory,  the  ideas  embodied  in  that  work  have  been  developed  and 
extended  by  others  into a systematic  procedure  for  the  solution of singu- 
lar   per turbat ion  problems  (e .  g. , Fr ied r i chs ,  7, 8 ,  Kaplun,9, O, and 
Lagerstrom  and  Kaplunll) .   For  the  sake of brevity,  the  discussion 
given  here  will  be  limited  to  the  essential  steps  in  the  procedure. 
Those  interested  in a more  detailed  account of the  method  are  referred 
to a recent book  by  Van  Dyke.  12 
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The first step  in  the  derivation of a perturbation  expansion  which 
is to  be  valid  in a boundary  layer  region is to  identi€y  the  source of non- 
uniformity  in  the  regular  perturbation  expansion.  This  can  be  accom- 
plished  in a number of interrelated  ways.  An examination of the  nature 
of the  singularity  will   usually  reveal  which  terms  in  the  governing dif- 
ferential  equations  have  been  improperly  accounted  for  in  the  conventional 
perturbation  procedure.   Moreover,   in  physical   problems, a qualitative 
understanding of the  natare of the  solution assists in  the  identification of 
these  terms.  Generally  speaking,  careful  scrutiny of all t e r m s  involving 
second  or  higher  order  derivatives  is   recommended. 

After  the  source of the  nonuniformity  has  been  identified,  the 
next  step  involves a stretching of the  independent  variables  by  factors 
that  depend  on  the  smallness  parameter.*  The  degree of stretching 
required is usually  suggested  again  either  by  the  behavior of the  regular 
perturbation  expansion  in  the  boundary  layer  domain  or by physical 
intuition. When both of these  approaches  fail,   the  requisite  stretching 
can  be  determined by t r ia l   and   e r ror .  An incorrect   choice  for   the 
stretching  factor  will  yield a perturbation  expansion  that  cannot  satisfy 
the  matching  condition  (to  be  discussed  below).  Thus,  although  rather 
cost ly   in   terms of t ime,  the  tr ial   and  error  approach  will   eventually 
lead  to  the  appropriate  stretching  factor. 

'The equations  satisfied by the  various  terms  in  the  boundary 
layer  perturbation  expansion  are  obtained by a repeated  application of 
a limit  process  that  involves  taking a l imit   as   the  smallness   parameter  
goes  to  zero  with  the  stretched  variables  held  f ixed.  That is, the  equa- 
tions  are  obtained  in  the  same  manner  as  those  in  the  regular  perturba- 
tion  theory  except  that  the  stretched  variables  are  held  fixed  instead of 
the  original  variables.  The  domain  within  which  these  new  equations 
apply  is a stretched  copy of the  original  boundary  layer  domain. In 
contrast  to  the  original  domain,  which  is  vanishingly  small,  the 
stretched  domain  is   usually of infinite  extent. 

The final  step  in  the  procedure  is  to  match  the  boundary  layer 
expansion  obtained  from  the  stretched  equations  with  the  regular  pertur- 
bation  expansion  in a domain of common  validity.  Matching  to  the  mth 
order   requires   that  

Lim E [ Regular  expansion - boundary  layer  expansion] = 0 
E " 0  
hte   rmedia te   var iab le  s fixed (IV. 2) 

- n  

*c 
In some  problems  i t   is   also  necessary  to  stretch  the  dependent  variables.  
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where E is the  smallness  parameter  and  both  expansions  are  expressed 
in  variables  ( intermediate  variables)  appropriate  to  the  domain of com- 
mon  validity.   The  intermediate  variables  are  stretched  but  not  as  much 
as the  boundary  layer  variables.  The  existence of a domain  within  which 
(IV. 2)  is satisfied  ensures  the  uniformity of the  perturbation  expansion 
in  the  transit ion  from  the  region  exterior  to  that   interior  to  the  boundary 
layer  domain.  As  mentioned  above,  the  nonexistence of a domain  within 
which (IV. 2) is  satisfied  indicates  that  the  stretching  factor  employed  in 
the  second  step is incorrect .  

C. Sineular  Perturbation  Calculations 

Singular  perturbation  theory  will   be  applied  in  this  section  to  the 
calculation of the  temperature  distribution  in  the  vicinity of the  singulari- 
t ies  of the  regular  perturbation  exphnsions.   Preliminary to this,  how- 
ever,   an  alternative  derivation of the  zero  order   equat ions  sat isf ied by 
the  temperature  distribution  will  be  given.  The  results  obtained  provide 
a clear  insight  into  the  rationale  behind  the  selection of the  stretching 
factor  utilized  in  the  singular  perturbation  calculations. 

The  alternative  derivation  starts  with  an  integration of the  exact 
equation (11. 2)  over  a small  volume  element AV 

A v =  I I / 
B t d Q  d tdd   a t6  

r sin  QdQdddr . 2 (IV. 3 )  

8 d a- 6 

Application of Gauss 's   theorem  to  the  result ing  equation  then  yields  the 
relation 

S AV 

(IV. 4 )  

where S denotes  the  surface  defined by the  boundaries oi AV. The 
integrals  involving  the  angular  coordinates 8 and d can  easily  be 
evaluated  because of the  incremental   nature of the  volume  element 
with  respect  to  these  variables.  Substitution of the  boundary  condi- 
tions (11.4) and (11.7) in  the  resultant  expression  then  yields 
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(IV. 5) 

Now expand (IV. 5) in  the  limit  of  small 6 (much  less  than  a)  and  take 
the limit as  the  angular  increments  de  and dd go to  zero.  The  follow- 
ing  relation  is  obtained  when  terms  of  zeroand  first  order  in 6 a r e  
retained. 

Q FOGS t Q [- 2 T4(a, 8 , d )  + Q E  1 

The  conventional  zero  order  approximations  to  T(r)   are  obtained 
when  the  limit  process  LimC is applied  to (IV.6) (the  form of the  equa- 
tions  obtained  depends on the  relative  magnitudes of o and 6). A s  
mentioned  previously,  however,  the  angular  derivatives of T(r) a r e  
very  large  in  the  boundary  layer  domains.  Even  though  the  second  term 
in (IV. 6 )  is   multiplied by the  small  parameter  6/a,  it  should  not  be 
neglected  in  these  domains.  To  negate  the  factor 6 / a  multiplying  the 
second  term,  the  angular  variables  must  be  stretched by  a fac tor   (a /6) l l2 .  
Thus,   the  stretching  factor (a/6)ll2 will  be  employed  in  the  boundary 
layer  calculations. 

2 - = 0(1)  (Slow Rotation) ww 
1. K 

The first two terms  in  the  perturbation  expansion of 
U(&, 8 ,  d) valid  in  the  vicinityof  the  shadow  boundary  will  be  derived  in 
this  section.  Additional  terms  can  be  obtained  in  the  same  manner. 
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The  source of the  nonuniformity of the  regular  perturbation 
expansion of U(t;, 8 ,  b )  is the  rapid  variation of the  temperature  distri-  
bution  in  the  vicinity of the  shadow  boundary.  According  to  the  stretch- 
ing  principle  the  variables  along  the  direction of rapid  change  should  be 
stretched. To eliminate  the  necessity of stretching  more  than  one 
variable,  eq. (111. 3)  will   be   rewri t ten  in   terms of variables  defined  with 
respect  to a coordinate  system  oriented  in  the  direction of the  incident 
f l u x  (see  Fig. 2). The  distance  from  the  shadow  boundary is then a 
function  only of the  polar  angle 8 ' .  When wr i t t en   i n   t e rms  of r ,  Q ' ,  and 
dl, eq. (111. 3)  assumes  the  form 

(IV. 7 )  

where  the  unprimed d derivative  in (IV. 7 )  i s  

a a a = sin p sin b 1  7 t (cos p t cot 8' cos dl s in  ae w *  
(IV. 8 )  

Calculations  given  in  the  introductory  portion of t is   section 
indicate  that  the  appropriate  stretching  factor is (a/d) 1 7 2  . To achieve 
this  stretching,  the  variables 8 '  will  be  replaced by a new  variable 

in t e r m s  of which  the  equations  satisfied  by U(c, 8, d)  become 
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L ( DIRECTION OF 
R I N C I D E N T  FLUX) I 

Fig. 2 .  A new coordinate system. 
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- 1 < 5   < 1  

-00 < E <  OD 

0 < d < 2 a  (IV. 10) 

(IV. 11) 

au 6 4 
ac 
- = - a  [ U  a - SI 5 = - 1  . (IV. 12) 

where HIS) is a cnit  step  function. 

The  equations  satisfied by the   ze ro   o rde r   t e rm  in  the boundary 
layer  perturbation  expansion  can  be  obtained  from (IV. 10) to ( IV.   12) 
by applying  the  limit  process 



It is found that 

30 

a2u 
;i = 0 a (IV. 14) 

aL. 

a uoi 
ag = o ,  5 = * 1  (IV. 15) 

where  the  subscript , i  denotes  that Uoi i s  a boundary  layer  term.  The 
solution of (IV. 14)  and (IV. 1 5 )  is the trivial  solution 

Th  thickness  parameter  appears  in (IV,  10) to  (IV. 1 2 )  in  powers 
of (6/a)1r20  This  indicates  that  the  erturbation  expansion of U ( & , c  r) dl) 
should  be  sought  in  powers of (6/a)lY2.  The  equations  for  the  second 
term  in  the  boundary  layer  expansion  are  obtained  when  LimL.,c(a/6)1/2 
is  applied  to  the  difference  between (IV. 10 )  ((IV. 1 l ) ,  (IV. 1 2 ) )  and 
(IV. 14) ((IV. 15), (IV. 15)).  These  equations  are  identical  to (IV. 14)  and 
(IV. 15).   Therefore Uli(t;, 5, dl) can  be  written 

To  determine  Aoi  and  Ali,  the  equations  satisfled by U 2 i  and 
U3i must  be  considered.  Because  the  method of deriving  such  equations 
has  been  amply  demonstrated  in  the  preceding  portions of this  report ,  we 
will  henceforth  dispense  with  zn  account of the  details of these  derivations. 
UZi i s  found to satisfy  the  equations 

aZuZi a2A 

-7 t " a c  85;' = O ' 
(IV,  18) 

(IV. 19) 



and Ugi the  equations 

a u3i - 4aAoi  4i - ac H ( 6 )  , 5 = 1 . 3 - "  a c  

au3i  3 
ag = 4a Aoi Ali , 5 = -1 . 

(IV. 20) 

(IV. 21) 

(IV. 22) 

(IV. 23) 

Consider  f irst   the  determination of APi. Since Aoi is  independent 
of 5 ,  integration of (IV. 18)  yields  the  following  expression for U2,(5,6, dl)  

Substitution of (IV. 24) in  the  boundary  conditions (IV. 19)  and (IV. 20)  gives 
equations  that  can  be  solved  directly for Bzi(C, b ' )  and  from  which  an 
equation  satisfied by Aoi(Cl 6 ' )  can  be  obtained.  As a resul t  we find 
that 

B2$S, d l )  = - 7 9, , a (IV. 25) 

a2A 3 = aLAoi - 4  - $1 , - a o < ~ < a o .  (IV. 26) 



". . 

The  desired  solution of (IV. 26) is uniquely  determined  by  the 
condition  that Uoi and Uo match  in  their   domains of common  validity. 
Assuming  that  there  exists  an T, 0 < T < 1/.2J  and a bounded  number 
y such  that  the  domains of common  validity  are  given  by 

(IVo 27) 

(IV. 28) 

it  can be shown  that  the  matching  condition  requires  that 

(IV. 30) 

The  only  solution of (IV. 22)  that   satisfies (IV. 2 9 )  and ( N o  30) is 

(IV. 31) 

The  behavior of the  zero  order  term  in  the  perturbation  expansion of 
U(&, 8 ,  d)  is now known  everywhere.  Substitution of the  results  ex- 
pressed  in  (111.43) and (IV. 31)  in (1.11. 39)  yields  an  equation  that  deter- 
mines  the  hitherto  unspecified  constant q The  result  is 

0 

(IV. 32) 

0 0 
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An equation  for  Ali(S, 6') can  be  derived  from (IV. 21) to  (IV. 23) 
in  exactly  the  same  manner as was  that   for Aoi f rom (IV. 18) to  (IV. 20). 
We find  that 

- 00 c g c a0 . (IV. 33) 

Ali(E, d l )  is uniquely  determined by the  conditions  that  must be imposed 
to  ensure  matching.  The  matching  condition is 

"-0, y fix.ed 6 
a 

(IV. 34) 

and reference  to  results  previously  obtained  then  indicates  that 

Lim Ali(g, dl) = 0 , 
"00 

(IV. 35) 

(IV. 36) 

Solution of (IV. 33)  by variation of parameters  with  the  conditione (IV. 35) 
and (IV. 3 6 )  imposed at = fm yields 



(IV. 3 7 )  

where 

(IV. 38) 

2 
5 = O(a/6) 2 (Rapid  Rotation) 

2. K 

The  regular  perturbation  expansion of the  temperature 
distribution  in a rapidly  rotating  shell  is  nonuniform  in  the  vicinity of 
the  circles 8 = cos-’(*  sin p). As seen  from  Fig.  3 ,  these  c i rc les  
are  the  boundary  lines  between  the  regions  on a rotating  sphere  where 
the  incident  solar  flux  at a point is (1)  always  nonzero, (2)  nonzero  at  
some  instants  and  zero  at  others,  and ( 3 )  always  zero.   Regular  per- 
turbation  theory  does  not  properly  account  for  the  rapid  variation of 
the  temperature  distribution  in  the  transit ion  from  one of these  regions 
to  another. In this  section  singular  perturbation  theory  will  be  utilized 
to  derive  the  f irst   three  terms  in  the  perturbation  expansion of 
U(5, 8 ,  d)  valid  in  the  vicinity of 8 = cos-   ‘ (s in  p). Additional  terms 
in  this  expansion  and  an  expansion  valid  near 8 = cos-’(-   sin p) can 
be  obtained  in a s imilar   manner .  

The  rapid  variation of U ( 5 ,  8 ,  d)  nea r  8 = cos  (s in  p) will 
-1  

be accounted  for by replacing  the  variable 0 with a new stretched 
variable p. 

IIV. 3 9 )  

When expressed   in   t e rms  of the  variables G 9 p ,  and d ,  the  equations 
satisfied by a rapidly  rotating  spherical  shell  assume  the  form 

* As is  customary,  the  stretched  variable  is   defined  such  that   i t   goes  to 
zero  in  the  boundary  layer, 
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Fig .  3 .  Flux distribution on a rapidly  rotating shell. 
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5 = -1  

Application of the  l imit   process 

Lim  6/a - 0; <,p, d fixed  Lim 
SSP ' 

g =  1 (IV. 41) 

(IV. 42) 

(IV. 43) 

to (IV. 40) t o  (IV. 42) yields  the  equations  satisfied by the   zero   o rder   t e rm 
in  the  boundary  layer  expansion. 

(IV. 44) 

3 6  



S = * l  . (IV. 45) 

The  solution of (IV. 44)  and (IV. 45)  is simply 

where  Coi is a function  independent of 5 and d.  
The  form of the  regular  perturbation  expansion  in  the  vicinity of 

the  singularity  at  8 = cos- 1 (sin p) indicates  that  the  bound ry layer  
perturbation  expansion  should  be  sought  in  powers of (6/a) 1 74 . It can 
easily  be  shown  that  the  second,  third,  and  fourth  terms  in  such  an 
expansion  also  satisfy  (IV.44)  and  (IV.45).  Therefore,  these  terms 
are  also  independent of 5 and d. 

To determine  the  functional  forms of the  Cji(p)  (j = 0, 1, 2, 3 ) ,  the 
equations  satisfied by U . ( c , ~ ,  6 )  (k = 4, 5, 6,7)  must  be  considered. 
These  equations  are  eas&  obtained  from  (IV.40)  to  (IV.42) by repeatedly 
applying  Lim in  the  manner  illustrated  in  the  calculations  given  in 
the  preceding  portions of this  report.  The  resulting  equations  can  be 
expressed  in   the  form 

5 ,  CL 

a.  U4,(5, PI d )  

(IV. 48) 

(IV. 49) 

(IV. 50) 
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- au5i = a 4 Coi 3 Cli ,  
aS 

5 = -1 . 

-“ au6 i - a kcoi 3 CZi t 6COi 2 2  C l i  - Gs2] 
a t ;  

- au6 i = a [ 4 ~  3 
oi ‘2i t 6C2i .Ii] , 

(IV. 51) 

(IV. 52) 

(IV. 53) 

(IV. 54) 

(IV. 55) 

t; = -1  . (IV. 56) 

2 a2c3i 
a 5  aY2 
(< - + &)u7 i  t -  = 0 , (IV. 57) 

(IV. 58) 

38 



au7 i 3 3 2 
" 

a5 - a 4  [cOi cgi + cOi cli + cOi cli cZi] , 5 = -1 , (IV. 59) 

where 

(IV. 60) 

To  obtain  an  equation  for  Coi(p)J  integrate (IV. 48) to  (IV. 50)  with 
respect  to 6 over  the  interval 0 < d < 2~ and  divide  the  result by 2s. 
Since U4. ( 5 ,  p 6 )  ' is periodic  in 6 with  period 27r and  Coi(p)  in  inde- 
pendent oi d, the  following  equations  are  obtained  (quantities  averaged 
over  the  interval 0 I d 5 2rr are  denoted  by a b a r )  

Integration of (IT 

6 = -1 

(IV. 6 1 ) 

(IV. 62) 

(IV. 63) 

(IV. 62)  and (IV. 63) 1.6 1) and  substitution of the  result  in 
yields  two  equations  from  which  an  equation  for  Coi(p)  can  be  obtained. 
The  result  is 

Equations  for  C,i(p), C i(p)  and  C3i(p)  can  be  obtained  in  exactly  the 
same  manner.   The  resu f ts a r e  

d2C 
4a 3 

'oi 'li 
- a 
2 
- 
GS 1 J (IV. 65) 
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d2C3i . -3 I 

0 1  L1 
a 

r d2C3i 3 3 1 
- = 40 Coi C2i t a cli c2i + 4cOi cli - z ~ s 3  t 

* 2  i 3 1 + 4COi C l i  - zCs3 t i 
(IV. 67) 

where - 00 < p, < 00. The  functional forms of the GSm(CL) a re   de te r -  
mined by averagiqg (N. 60)  over d and  expanding  the  average of 
G&, 6 ,  p; 6/a)  about p, = 0. This  yields 

G s , )  = sin P cos p , (IV. 68) 

(IV. 6 9 )  

(IV. 7 0 )  

whe r e  

M(P) = ( 2  sin P cos P) 2 -1/2 

sec  p t sin p tan P t .G - 3 3 tan 1 
3 3 Pf 0, 

cos p 3 sin p cos P 

(IV. 72) 

40 



As in  the  case of slow  rotation,  the  solutions of the  boundary 
layer  equations  are  uniquely  determine by the  matching  condition. In 
general ,   matching  to  the  order  (6/a)m 7 requires  that  

Lim 
6/a - 0, v fixed 

(IV. 7 3) 

where w is an  intermediate  variable  appropriate  in  the  domain of common 
validity. In this  domain  the  variables 0 and IJ. assume  the  form 

P = ($ Y (IV. 74)  

(IV. 75)  

where 0 < q < 1/2  and w is bounded.  Expansion of the  regular  and 
boundary  layer   per turbat ion  ser ies   in   terms of the  intermediate  variable 
defined  in (IV. 74)  and (IV. 75), substitution of the  result  in  (IV. 73), and 
application of the l imit   indicated  there  for m = 0, 1 , 2, 3 yields  the 
following  conditions  on  the  C..(P) ( j  = 0, 1, 2, 3 ) .  

J1 

C .(* a) = U ( 5 ,  C O S  s ln  p, 6) = 
- 1  . 

r n  czs + 0 )  1/4 
0 1  0 

Cli ( f  al) = 0 , 

Y 

(IV. 76)  

(IV. 77)  

(IV. 78)  

(IV. 79)  
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When the  conditions at infinity  are  taken  into  account,  solution 
of (IV. 64) t o  (IV. 67)  gives 

(IV. 80') 

(IV. 81 ) 

(IV. 82) 

(IV. 83) 

3 1/2  where h = (4a Coi) . As in  the  case of slow  rotation,  it is a simple 
mat te r  now to  calculate  the  constant q We find 

0' 

90 - - 2 j d Q s i n 0  = 1 . 
0 

(IV. 84) 
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V. TRANSITION FROM S L O W L Y  TO  RAPIDLY  ROTATING 
SPHERES - ZERO  ORDER  TEMPERATURE  DISTRIBUTION 

A. Introduction 

Quantitative  estimates of the  effect of rotation  on  the  temperature 
distribution  in a spinning  spherical   shell   are of considerable  importance. 
Physically,  it  is obvious  that   the  temperature  extremes  on a rapidly 
rotating  shell  are  less  severe  than  those  on a stationary  one. A question 
of practical  importance,however,  is how fast   the  shell   must  rotate  to 
keep  the  extremes  within  specified  limits.  To  obtain  an  answer to this 
question  the  mathematical  implications of rotation  must  be  investigated. 
'The results  obtained  in  the  preceding  sections  have  revealed  that  the 
temperature  distribution  in a spinning  shell is affected  relatively  little 
when (wa2/K ) = O(1)  and  very  significantly  when (wa2/K) = O(a/6)2. 
In the  f irst   case  the  temperature  distribution  differs  only  sl ightly  from 
that  for a stationary  shell  and  in  the  second  it  approximates  that  for a 
shell  rotating  at  an  infinite  rate (i. e. ,   maximum  smoothing  occurs).  
Calculations  will now be  given  for  the  transition of the  temperature 
distribution  from  that  characterist ic of slow  rotation  to  that  character- 
is t ic  of r a  id  rotation. As discussed  ear l ier ,   th is   t ransi t ion  occurs  
when (ma 3 -  / K )  - O(a/6). 

B. Differential . . Equation ~~ ~~ for ~ Zero " .  Order  Temperature  Distribution 

The  differential  equation  satisfied  by  the  temperature  distribu- 
tion  in a thin  spherical  shell  rotating  at a rate  that  is  neither  slow  nor 
fast  can  be  derived  from  the  zero  and  first  order  regular  perturbation 
equations.  These  equations  are  obtained  from (111. 3 )  to (111. 5)  by 
applying  Limt;  in  the  manner  illustrated  in  the  preceding  sections. 
Wo is found  to  satisfy  the  equations 

5 = f l  , 

and U1 the  equations 
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3 

where 

& =  1 

a = -  wa6  
K 

Note that  the  nonzero  value of Lim wa6/K has  been  taken  into  account 
in  the  derivation of (V. 3) .  Integratlon of (V. 1)  indicates  that Uo is  
independent of & , Hence,  when (V. 3 )  is  integrated we obtain 

s 

Substitution of (V. 7 )  in  the  boundary  conditions (V. 4 )  and (V. 5) and  elimina- 
tion of B l ( Q ,  d) from  the  resultant  equations  yields  the  following  nonlinear 
differential  equation  for Uo(B, 6 ) .  

au 
- 21T 

where 
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As in  the  case of slow  and  fast  rotation,  the  constant qo can  be  shown 
to  have  the  value  1/4. 

Equation (V. 8) cannot  be  solved  by  'exact  analytical  techniques. 
Furthermore,  perturbation  techniques  are of little  use  since  the  solu- 
tions of most   interest   are   those  for  y m 0(1) .*  Solutions  for Uo(8, d; 
p, y), however,  can  easily  be  obtained  numerically on a digital  com- 
puter. A number of solutions  for  various  parameter  values  have  been 
computed.  The  results of these  computations  will  be  discussed  next. 

C. - Zero  "_ Order  Temperature  Distribution 

The  solution of (V. 8) has  been  numerically  computed  on a digi- 
tal  computer  for  fifty-two  different  parameter  combinations. In each 
case,  the  solar  flux  was  assumed  to  be  incident  at  an  angle p = (~r /4) .  
This  value  was  selected  because  the  temperature  distribution so ob- 
tained  is  typical of what  can  be  expected  in  the  general  case (i. e. , a 
rather  hot  zone  near  the  upper  pole,  a zone of intermediate  tempera- 
ture  in  the  vicinity of the  equator,  and a relatively  cool  zone  at  the 
lower  pole).  Four  values of O(rr/6, n/3, ~ / 2 ,  2rr/3) and  thirteen 
values of y(0. 10, 0. 50,  0. 75 ,  1 .  00, 1. 25,<<&. 5 9  2. 00, 2. 50, 3. 0 0 ,  
3. 5 0 ,  4. 0 0 ,  4. 5 0 ,  5. 0 0 )  were  considered. 9 The  values of y ' s  
selected  cover  the  range  within  which  perturbation  theory  fails  to  yield 
a good  approximatlon  to Uo. When y is  outside  this  range,  pertur- 
bation  theory  can be employed  (for  small y perturb  about y = 0 and 
for   large y perturb  about y -. 03). 

, >% pJ:: 

.I. 
1. 

Nichols'  and  Hrycak  linearize (V.  8) by expressing Uo as  the  sum 
of a t e r m  Uo oo that   corresponds  to  the  temperature on a sphere 
rotating  at  an  Infinite  rate  and a remainder   t e rm Uo - Uo o9 which 
is   assumed  to  be much  smaller  than Uo They  then  obtaln  solu- 
tions of the  linearized  equation  satisfied by (Uo - Uo m). This 
approach  is   basically a perturbation  calculation  valid  for  sufficiently 
smal l  y. 

2 

*: * 
Note  that (V. 8)  can  be  solved by in  pection  when 8 > cos  ( -s in  6). 
The  result  is Uo(8, d )  = (q0/2)  = 0 . 5 9 5 .  Likewise,  when 
8 = 0, (V. 8) is easily  solved  to  yield Uo(8 ,  6) = 0. 832. 

The  relation  between y and  the  rate of rotation  in a typical  case  is 
y = 0.132/w  with w expressed  in  rpm (Fo = 0.0324  cal/cm2-sec,  
typical of solar  flux; E = 0. 9 ,  K = 0.48, K = 0. 86, aluminum 
shell   assumed; a = 60 cm,  6/a = 

- 1  

>;c  *c Y: 

45 



The  maximum  and  minimum  temperatures  for  the  fifty-two 
cases  computed  are  given  in  Table I. Note  that  although  the  tempera- 
ture  distribution is nicely  smoothed  in  the & direction  at  high  rates 
of rotation,  the  temperature  variation  is  still   rather  large  in  the 8 
direction. A detailed  plot of the  temperature  distribution at 8 = ( ~ / 2 )  
a s  a function of d for  six values of y i s  shown  in  Fig. 4. As  expected, 
the  temperature  distribution  for y = 0.1  very  closely  approximates  that 
for  y = 0, and  the  distribution  for y = 5. 0 is close  to  that  for y = a. 
The  transit ion  from a distribution  characterist ic of large w to  that 
character is t ic  of small  o occurs  when y - 1. 

TABLE I 

Maximum  and  Minimum  Temperatures;  lntermediate  Rotation  Rates 

I 

0. 1 0  0 .813  

0 .50  0.824 

0 .75  0.830 

1.00 0 .836  

1 .  25 0.842 

1. 50 0. 846 

2. 00 0.855 

2.50 0.861 

3 .00  0.866 

3 . 5 0  0 .869  

4.00 0 .872  

4 .50  0.874 

5. 00 0.876 

uO m i n  

0.808 

0.796 

0.790 

0 .783  

0.777 

0.771 

0 .762  

0.754 

0.747 

0.742 

0 .738  

0.734 

0.731 

uO m ax  

0.761 

0.777 

0.787 

0.796 

0.805 

0.81 3 

0. 827 

0.838 

0.847 

0.854 

0.860 ' 

0. 864 

0.867 

Tr lT - 
3 I -2 

m i n   m a x  

0.753 0 .702  

0.735 0.714 

0.7  25 0.721 

0.71 5 0 .729  

0.705 0 .736  

0.696 0.743 

0 .680  0.756 

0.667 0.767 

0.656 0.777 

0.647 0 .785  

0.636 0 .792  

0 .630  0 . 7 9 8  

0 . 6 2 5  0 .803  

uO m i n  
~ . .  

0.695 

0 .683  

0.676 

0 .669  

0 .662  

0.656 

0.644 

0.635 

0.627 

0.620 

0.615 

0.611 

0 .608  

- 21-r 
3 
- 

uO m a x  
- -  

0.625 

0.628 

0.630 

0 .633  

0 . 6 3 5  

0 .638  

0.643 

0 .648  

0.652 

0.657 

0.66 1 

0.665 

0.668 

~- 

uO m  in 
~ . -  

0.6  23 

0 .619  

0.617 

0.615 

0.613 

0.611 

0 .608  

0.605 

0 .603  

0.601 

0 .600  

0 .598  

0 .598  
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Fig. 4. Temperature  distribution - intermediate  rotation  rates 
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v I. SUMMARY 

A method  for  calculating a uniformly  valid  perturbation  expan- 
sion of the  temperature  distribution  in a thin  spherical   shell   has  been 
discussed.  Examination of the  results  obtained  reveals  that  the  con- 
ventional  perturbation  approach (i. e. , regular  perturbation  calcula- 
tion)  yields a valid  zero  order  approximation  although it provides  no 
means of estimating  the  error  incurred  in  the  approximation.  ' Informa- 
tion  regarding  the  magnitude of the e r ror   and   the   form of the  correction 
terms  can  be  obtained  only if  s ingular  perturbation  techniques  are 
employed.  To  illustrate  the  perturbation  method,  we  have  derived  the 
first few terms  in  the  uniformly  valid  perturbation  expansions of the 
tem  erature  distribution  in  spinning  shells  for  the  cases of slow 
((ma 3 / K )  = O(1))  and  rapid ( ( w a z / K )  = O(a/6)2)  rotation.  Additional 
t e rms   can  be  derived  in  the  same  manner.  This  may  be  desirable 
when  the  shell  thickness  is  not  really  very  thin,  since  the  error  incur- 
red  in  approximating  the  temperature  distribution by the  uniformly  valid 
perturbation  expansion is always  less  than  the  order of the l a s t   t e r m  
retained. 

The  analysis  has  shown  that  the  zero  order  temperature  distri-  
bution  in a shell  rotating  at a rate  such  that  (oa2/K) = 0(1)   is   ident ical  
to  that  in a stationary  shell.  Likewise,  when (wa2/K) = O(a/6)2,  the 
zero  order   temperature   dis t r ibut ion is identical  to  that  in  the  case of an 
infinite  rate of rotation.  These  two  cases  are  referred  to  in  this  report  
as  slow  and  rapid  rotation.  The  transition  from a distribution  charac- 
te r i s t ic  of slow  rotation  to  one  characteristic of rapid  rotation  occurs 
when (wa2/K) = O(a/6). We derived  the  differential  equation  satisfied 
by the  zero  order   temperature   dis t r ibut ion  in   this   case.   Since  the 
equation is nonlinear,  numerical  solution  techniques  were  employed. 
The  results of the  numerical  computation  reveal  that  the  transition  in 
the  temperature  distribution  occurs  when  the  parameter 

2rr a€ u -1 
Y =  K 

is in  the  range 0. 1 < y < 5. 0. F o r  y ' s  outside  this  range  the  tempera- 
ture  distribution  closely  approximates  that   for y = O(w - 00) o r  y -00 
(w = 0). 

In all of the  calculations,  the  angle  between  the  direction of the 
solar  flux  vector  and  the axis of rotation  was  taken  to  be  an  arbitrary 
parameter  p with  values  in  the  range 0 5 p I (1r/2). In the  case 
of slow  rotation (oa2/K = 0(1)),   the  temperature  distribution is centered 
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about  an  axis  defined by the  direction of the  solar  f lux  vector.  In other  
cases  the  temperature  distribution  generally  consists of a hot  zone 
near  the  upper  pole  defined by  two axis of rotation, a  zone of inter-  
mediate  temperature  in  the  vicinity of the  equator,  and a relatively 
cool  zone near  the  lower  pole,  The  boundaries of these  regions  are 
the c i rc les  8 = cos’l(f sin p). 

50 



APPENDIX A - HEAT  TRANSFER WITHIN AN EVACUATED  SPHERE 

The  calculation of heat  transfer  within a closed  surface is compli- 
cated  by  the  fact  that  the  heat  radiated  from  each  point  on  the  surface is 
eventually  absorbed  or  reflected  at  some  other  point.  Heat is radiated 
in  accordance  with  the  Stefan-Boltzmann  law 

radiated  heat  flux = (TP T (2) . 4 
(A. 1) 

The  rate  at  which  energy  radiated  from  the  interior of a spheri-  
cal   surface is absorbed on a surface  element dA can  be  written  (see 
Fig. A- 1 )  

ra te  of absorption 
at  dA of heat  radiated = Q l  dA 
from  other   surface 
elements d 1 

21r 

0 0 

where  the  scattering is assumed  to  be  Lambe  rtian. 

Note  that  the  heat  radiated  from  other  surface  elements  and 
absorbed  a t  dA is independent of the  coordinates of dA. Likewise, 
the  radiated  heat  that is scat tered  f rom dA and  all   other  surface 
elements is independent of position.  Thus,  the  rate  at  which  heat 
sca t te red   f rom  o ther   sur face   e lements   i s   absorbed   on  dA can  be 
writ ten 
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Fig. A-1. Coordinate system. 
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rate of absorption  at 
of hea t   sca t te red   f rom = Q" dA = (1 - E )  [total   f lux  absorbed] dA 
other  surface  elements dA1 

= ( 1  - E )  (Ql t Q") dA . 

Solution of (A. 3)  for Q'  t Q" i n   t e r m s  of Q' yields 

[total  flux  absorbed] = Q' + Q" = - Q' 1 
€ 

ZlT 

uE dd' 7 de'  sin 8 '  T (r ,  Q', dl) . G 
4 

0 0 
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APPENDIX B - DIFFERENTIAL EQUATION SATISFIED BY U WHEN 
a = O(a/a) 0 

When a = O(d/a),  the  zero, first, and  second  order  equations 
obtained f rom (111. 3)  to (111. 5) a r e  

a u O  
= 0, 5 =  f l  

a2ul  au 
a52 t 2 . 2  a 5  ( 5 2 )  = 0 

au  au 
U = 0 (B. 5 )  

- a u 2  - - ac" [u: - qo] , 5 = -1 
a 5  a 
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whe r e  

Equations (B. 1)   to  (B. 4) indicate  that U and u1 a r e  in&- 
pendent of <. Thus,  integration of '(B.'5) yields 0 

Substitution of (B. 9) in  the  boundary  conditions (B. 6 )  and (B. 7) and 
elimination of B2 from  the  resulting  equations  then  yields  the  follow- 
ing  equation  for Uo. 

Note  that Uo(O, d) sat isf ies  a nonlinear  partial  differential  equation. 
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